REGULAR ELEMENTS WHICH IS A SUM OF AN IDEMPOTENT AND A LEFT CANCELLABLE ELEMENT

Huanyin Chen and Miaosen Chen

Abstract. Let M be a right R-module, and let $a \in \text{End}_RM$ be unit-regular. If $\text{End}_R(\text{Im}a)$ is an exchange ring and $\text{End}_R(\text{Ker}a)$ has stable rank one, it is shown that there exist an idempotent $e \in \text{End}_RM$ and a left cancellable $u \in \text{End}_RM$ such that $a = e + u$ and $aM \cap eM = 0$.

1. INTRODUCTION

A ring R is an exchange ring if for every right R-module A and two decompositions $A = M \oplus N = \oplus_{i \in I} A_i$, where $M_R \cong R$ and the index set I is finite, there exist submodules $A'_i \subseteq A_i$ such that $A = M \oplus (\oplus_{i \in I} A'_i)$. It is well known that a ring R is an exchange ring if and only if for any $x \in R$ there exists an idempotent $e \in Rx$ such that $1 - e \in R(1 - x)$. Clearly, regular rings, π-regular rings, semi-perfect rings, left or right continuous rings, clean rings and unit C^*-algebras of real rank zero (cf. [2, Theorem 7.2]) are all exchange rings. We say that a right R-module M has the finite exchange property if and only if End_RM is an exchange ring. A ring R has stable rank one in case $aR + bR = R$ with $a, b \in R$ implies that there exists $y \in R$ such that $a + by$ is a unit of R. We know that a right R-module M can be cancelled from direct sums if and only if End_RM has stable rank one. Also we know that every strongly π-regular ring has stable rank one.

Recall that an element $x \in R$ is clean provided that it is a sum of an idempotent and a unit. We say that a ring R is clean if every element in R is clean. Many author investigated clean rings such as [1],[4-7] and [10-16]. Answering a question of Nilcholson, Camillo and Yu [5, Theorem 5] claimed that every unit-regular ring is clean. But there was a gap in their proof. Camillo and Khurana proved this result

Received April 1, 2004; accepted September 14, 2004.
Communicated by Shun-Jen Cheng.
2000 Mathematics Subject Classification: 15E50, 19B10.
Key words and phrases: Exchange ring, Stable rank one, Idempotent.
by a new route and gave a characterization of unit regular rings. They proved a ring \(R \) is unit-regular if and only if for any \(a \in R \) there exist an idempotent \(e \in R \) and a unit \(u \in R \) such that \(a = e + u \) and \(aR \cap eR = 0 \). In this paper, we extend Camillo and Khurana’s result to exchange rings and get a new characterization of a regular element which is a sum of an idempotent and a left cancellable.

Throughout the paper, every ring is associative with an identity. An element \(x \in R \) is regular if there exists \(h \in R \) such that \(x = xh + hx \). An exchange ring, there exist right \(a \in R \), \(b \in R \) such that \(aM \subseteq Kera \) and \(M \leq b \). Hence, \(Kera \cong \frac{M}{Ima} \), \(X \leq \frac{X}{Y} \). Thus \(X \) can be cancelled from direct sums, so we get a right \(R \)-module isomorphism \(\psi : X_2 \to X_1 \). As \(\text{End}_R(Kera) \) has stable rank one, so has \(\text{End}_R(X_k) \). Thus \(X_1 \) can be cancelled from direct sums, so we get a right \(R \)-module isomorphism \(\psi : X_2 \to Y_1 \).

Theorem 1. Let \(M \) be a right \(R \)-module, and let \(a \in \text{End}_RM \) be unit-regular. If \(\text{End}_R(Ima) \) is an exchange ring and \(\text{End}_R(Kera) \) has stable rank one, then there exist an idempotent \(e \in \text{End}_RM \) and a left cancellable \(u \in \text{End}_RM \) such that \(a = e + u \) and \(aM \cap eM = 0 \).

Proof. Set \(E = \text{End}_RM \). Since \(a \in E \) is regular, we have \(x \in E \) such that \(a = axa \). So \(M = \text{Ima} \oplus (1_M - ax)M = xaM \oplus Kera \). As \(\text{End}_R(Ima) \) is an exchange ring, there exist right \(R \)-modules \(X_1, Y_1 \) such that \(M = \text{Ima} \oplus X_1 \oplus Y_1 \) with \(X_1 \subseteq Kera \) and \(Y_1 \subseteq xaM \). Clearly, \(Kera = \text{Ima} \cap (X_1 \oplus \text{Ima} \oplus Y_1) = X_1 \oplus X_2 \), where \(X_2 = \text{Kera} \cap (\text{Ima} \oplus Y_1) \). Likewise, we have a right \(R \)-module \(Y_2 \) such that \(xaM = Y_1 \oplus Y_2 \). Since \(a \in E \) is unit-regular, we get \(Kera \cong \frac{M}{Ima} \); hence, \(X_1 \oplus X_2 \cong Kera \cong \text{Coker} \cong X_1 \oplus Y_1 \). So we have an isomorphism \(k : X_1 \oplus X_2 \to X_1 \oplus Y_1 \). As \(\text{End}_R(Kera) \) has stable rank one, so has \(\text{End}_R(X_k) \).

Assume that \((a - hv)(x_1 + y_1 + x_2 + y_2) = 0 \) for any \(x_1 \in X_1 \), \(y_1 \in Y_1 \), \(x_2 \in X_2 \), \(y_2 \in Y_2 \). Then \(a(y_1 + y_2) = x_1 + y_1 + \psi(x_2) \in \text{Ima} \cap (X_1 \oplus Y_1) = 0 \), and then \(x_1 = -y_1 - \psi(x_2) \in X_1 \cap Y_1 = 0 \). It follows from \(a(y_1 + y_2) = 0 \) that \(y_1 + y_2 = (1 - xa)(y_1 + y_2) = Kera \subseteq X_1 \oplus X_2 \cap (Y_1 \oplus Y_2) = 0 \); hence \(y_1 + y_2 = 0 \). This infers that \(y_1 = -y_2 \in Y_1 \cap Y_2 = 0 \), and then \(y_1 = y_2 = 0 \). Furthermore, we get \(\psi(x_2) = -y_1 = 0 \). As \(\psi \) is an isomorphism, we have \(x_2 = 0 \).
Thus \(x_1 + y_1 + x_2 + y_2 = 0 \). This means that \(a - e \in R \) is left cancellable. Let \(u = a - e \). Then \(a = e + u \). Furthermore, we get \(aM \cap eM \subseteq aM \cap (X_1 \oplus Y_1) = 0 \). This implies that \(aM \cap eM = 0 \).

Let \(F \) be a field of characteristic 2. For any \(a \in F[x]/(x^2) \), we have \(b \in F[x]/(x^2) \) such that \(a^2 = ba^3 \). Hence \(F[x]/(x^2) \) is strongly \(\pi \)-regular, and then \(F[x]/(x^2) \) is an exchange ring having stable rank one. In addition, it is easy to show that every left cancellable element in a strongly ring is a unit. It follows by Theorem 1 that for any regular \(c \in F[x]/(x^2) \), there exist an idempotent \(e \in F[x]/(x^2) \) and a unit \(u \in F[x]/(x^2) \) such that \(c = e + u \) and \(c(F[x]/(x^2)) \cap e(F[x]/(x^2)) = 0 \). But we notice that \(F[x]/(x^2) \) is not regular because \(J(F[x]/(x^2)) = (x + (x^2))^2 \neq 0 \). This means that Theorem 1 is a nontrivial generalization of [4, Theorem 1].

Corollary 2. Let \(V \) be a right vector space over a division ring, and let \(R = \text{End}_D V \). If \(x \in R \) is congruent modulo \(\text{Soc}(R) \) to a unit, then there exist an idempotent \(e \in R \) and a left invertible \(u \in R \) such that \(a = e + u \) and \(aV \cap eV = 0 \).

Proof. Since \(x \in R \) is congruent modulo \(\text{Soc}(R) \) to a unit, by [3, Lemma 3.3], \(\dim_D(\text{Ker} x) = \dim_D(\text{Coker} x) < \infty \). It follows from \(\dim_D(\text{Ker} x) = \dim_D(\text{Coker} x) \) that \(x \in R \) is unit-regular. It follows from \(\dim_D(\text{Ker} x) < \infty \) that \(\text{End}_D(\text{Ker} x) \) has stable rank one. In view of Theorem 1, there exist an idempotent \(e \in R \) and a left cancellable element \(u \in R \) such that \(a = e + u \) and \(aV \cap eV = 0 \). Since \(R \) is a regular ring, we have a \(v \in R \) such that \(u = wu \); hence, \(vu = 1 \). That is, \(u \in R \) is left invertible. Therefore we complete the proof.

Let \(V \) be a right vector space over a division ring, and let \(R = \text{End}_D V \). Very recently, Nicholson et al. proved that for any \(a \in R \), there exist an idempotent \(e \in R \) and an invertible \(u \in R \) such that \(a = e + u \)(see [16, Lemma 1]). But we claim that \(aV \cap eV = 0 \) may be not true. Let \(V \) be an infinitely dimensional vector space over a division ring \(D \) with a basis \(\{x_1, x_2, \cdots, x_n, \cdots\} \). Define \(\sigma : V \to V \) given by \(\sigma(x_i) = x_{i+1} \) (\(i = 1, 2, \cdots \)) and \(\tau : V \to V \) given by \(\tau(x_1) = 0, \tau(x_i) = x_{i-1} \). Clearly, \(\sigma \tau = 1_V \) and \(\sigma \tau \neq 1_V \). By [16, Lemma 1], there exist an idempotent \(e \in R \) and an invertible \(u \in R \) such that \(\sigma = e + u \). If \(\sigma(V) \cap eV = 0 \), then \(\sigma u^{-1}e = (e + u)u^{-1}e = e u^{-1}e e + e \in aV \cap eV = 0 \); hence, \(\sigma u^{-1}(\sigma - u) = 0 \). This implies that \(\sigma = u \in U(R) \), a contradiction. Therefore \(aV \cap eV \neq 0 \).

Recall that an ideal \(I \) of a ring \(R \) is of bounded index if there is a positive integer \(n \) such that \(x^n = 0 \) for any nilpotent \(x \in I \). Let \(a \in R \). We use \(a_L \) to denote the right \(R \)-module homomorphism from \(R \) to \(R \) given by \(a_L(r) = ar \) for any \(r \in R \).

Corollary 3. Let \(I \) be a bounded ideal of an exchange ring \(R \). Then the following hold:
(1) For any unit-regular \(a \in 1 + I \), there exist an idempotent \(e \in R \) and a left cancellable \(u \in R \) such that \(a = e + u \) and \(aR \cap eR = 0 \).

(2) For any unit-regular \(a \in 1 + I \), there exist an idempotent \(e \in R \) and a right cancellable \(u \in R \) such that \(a = e + u \) and \(Ra \cap Re = 0 \).

Proof. (1) Let \(a \in 1 + I \) be unit-regular. Then we have a unit \(x \in 1 + I \) such that \(a = axa \). Hence \(aL \in \text{End}_R R \) is unit-regular. Clearly, \(\text{End}_R(\text{ima}_I) \) is an exchange ring. On the other hand, \(\text{End}_R(Kera_L) = (1 - xa)R(1 - xa) \). Since \(I \) is a bounded ideal of \(R \), \((1 - xa)R(1 - xa) \) is an exchange ring of bounded index. By [18, Corollary 4], \(\text{End}_R(Kera_L) \) has stable rank one. It follows by Theorem 1 that there exist an idempotent \(eL \in \text{End}_R R \) and a left cancellable \(uL \in \text{End}_R R \) such that \(aL = eL + uL \) and \(aL \cap eL = 0 \). Let \(e = eL(1) \) and \(u = uL(1) \). Then \(e \in R \) is an idempotent and \(u \in R \) is left cancellable, as required.

(2) Let \(R^{op} \) be the opposite ring of \(R \). Then \(I^{op} \) is a bounded ideal of the exchange ring \(R^{op} \). Applying (1) to \(a^{op} \in R^{op} \), we obtain the result.

Let \(I \) be an ideal of a ring \(R \). We say that \(I \) has stable rank one provided that \(aR + bR = R \) with \(a \in 1 + I \) and \(b \in R \) implies that there exists \(y \in R \) such that \(a + by \) is a unit of \(R \). An ideal \(I \) of an exchange ring \(R \) has stable rank one if and only if for any regular \(a \in 1 + I \), there exists a unit \(u \in R \) such that \(a = auu \) (See [7, Proposition 2.3]). It is well known that every bounded ideal of a regular ring has stable rank one. We note that an ideal \(I \) has stable rank one only depends on the ring structure of \(I \) and doesn’t depend on the choice of \(R \). In other words, \(I \) has stable rank one as an ideal of \(R \) if and only if \(I \) has stable rank one as a non-unital ring.

Theorem 4. Let \(I \) be an ideal of an exchange ring \(R \). If \(I \) has stable rank one, then for any regular \(a \in 1 + I \), there exist an idempotent \(e \in I \) and a left cancellable \(u \in 1 + I \) such that \(a = e + u \) and \(aR \cap eR = 0 \).

Proof. Let \(a \in 1 + I \) be regular. Then \(a = axa \) for some \(x \in R \). Since \(I \) has stable rank one, it follows by [7, Proposition 2.3] that \(a \in R \) is unit-regular. This means that \(aL \) is unit-regular. Obviously, \(\text{End}_R(\text{ima}_I) \) is an exchange ring and \(\text{End}_R(Kera_L) \) has stable rank one. Similarly to Theorem 1, we get \(R = aL \oplus (1 - axa)R = xL \oplus (1 - axa)R = xL \oplus (1 - xL)R \). Since \(R \) is an exchange ring, we have right \(R \)-modules \(X_1, Y_1 \) such that \(R = aR \oplus X_1 \oplus Y_1 \) with \(X_1 \subset (1 - xa)R \) and \(Y_1 \subset xaR \). Furthermore, we have right \(R \)-modules \(X_2, Y_2 \) such that \(R = xL \oplus (1 - xL)R = X_2 \oplus Y_2, \) where \(k : X_1 \oplus Y_1 \cong X_2 \oplus Y_2 \) and \(\psi : X_2 \cong Y_1 \). Let \(h : R = X_1 \oplus X_2 \oplus Y_1 \oplus Y_2 \rightarrow X_1 \oplus Y_1 \oplus X_2 \oplus Y_2 = R \) given by \(h(x_1 + x_2 + y_1 + y_2) = k^{-1}(x_1 + x_2) + y_1 \) for any \(x_1 \in X_1, x_2 \in X_2, y_1 \in Y_1, y_2 \in Y_2 \). Let \(v : R = X_1 \oplus Y_1 \oplus X_2 \oplus Y_2 \rightarrow R \) given by \(v(x_1 + x_2 + y_1 + y_2) = x_1 + x_2 + y_1 \) for any \(x_1 \in X_1, x_2 \in X_2, y_1 \in Y_1, y_2 \in Y_2 \).
Let I be an ideal of a cohopfian exchange ring R. Since R is an exchange ring, so is the opposite ring R^{op}. Also we know that if I has stable rank one then so does I^{op}. Applying Theorem 4 to the ideal I^{op} of the ring R^{op}, we prove that for any regular $a \in 1 + I$, there exist an idempotent $e \in I$ and a right cancellable $u \in 1 + I$ such that $a = e + u$ and $Ra \cap Re = 0$. We note that the matrix $[i_{i,j}] \in CF_{MN}(R)$ is left cancellable, while it is not right cancellable. We don’t know whether ”a left cancellable $u \in 1 + I$” could be replaced by ”a unit $u \in 1 + I$ in the proceeding theorem. A ring R is cohopfian if any injective right R-module homomorphism from R to R is an isomorphism. As a consequence of Theorem 4, we now derive the following.

Corollary 5. Let I be an ideal of a cohopfian exchange ring R. Then the following are equivalent:

1. I has stable rank one.
2. For any regular $a \in 1 + I$, there exist an idempotent $e \in I$ and a unit $u \in 1 + I$ such that $a = e + u$ and $aR \cap eR = 0$.

Proof. (1) \Rightarrow (2) Let $a \in 1 + I$ be regular. By Theorem 4, there exist an idempotent $e \in I$ and a left cancellable $u \in 1 + I$ such that $a = e + u$ and $aR \cap eR = 0$. Let $u_L : R \rightarrow R$ given by $u_L(r) = ur$ for any $r \in R$. Since $u \in R$ is cancellable, u_L is injective. As R is a cohopfian ring, u_L is an isomorphism. Assume that $u_Lv = 1 = vu_L$ for a $v \in End_RR$. This infers that $u = v(1)^{-1} \in U(R)$, as required. (2) \Rightarrow (1) For any regular $a \in 1 + I$, there exist an idempotent $e \in I$ and a unit $u \in 1 + I$ such that $a = e + u$ and $aR \cap eR = 0$. Hence $au^{-1}e = (e + u)u^{-1}e = eu^{-1}e + e \in aR \cap eR = 0$, and then $au^{-1}(a - u) = 0$. This gives $a = au^{-1}a$. So I has stable rank one by [7, Proposition 2.3].

Recall that a ring R is said to be strongly π-regular in case for any $x \in R$ there exist a positive integer n and a $y \in R$ such that $x^n = x^{n+1}y$. A right R-module M is said to satisfy Fitting’s lemma if, for all $f \in End_RM$, there exists
a positive integer \(n \) such that \(M = f^n(M) \oplus \text{Ker}(f^n) \). It is well known that a module satisfies Fitting’s lemma if and only if its endomorphism ring is a strongly \(\pi \)-regular ring. Also we know that every strongly \(\pi \)-regular ring is a cohopfian exchange ring having stable rank one. Let \(R \) be a strongly \(\pi \)-regular ring. Using Corollary 5, we prove that \(x \in R \) is regular if and only if there exist an idempotent \(e \in R \) and a unit \(u \in R \) such that \(a = e + u \) and \(aR \cap eR = 0 \).

Let \(R = M_2(F[x]/(x^2)) \), where \(F \) is a field. Then \(R \) is strongly \(\pi \)-regular, so it is a clean ring. Let \(a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R \), and let \(u = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \). Then \(a = auu \) with \(u \in U(R) \); hence, \(a \) is unit-regular. Thus we have an idempotent \(e \in R \) and a unit \(u \in R \) such that \(a = e + u \) and \(aR \cap eR = 0 \). But \(a^2 \) can not be written in the form above. This is because \(a^2 \) is not regular. In other words, some elements in a ring \(R \) can be written in this form, while the other elements can not be written in this form.

A ring \(R \) is a \(\pi \)-regular ring in case for any \(a \in R \) there exists a positive integer \(n(x) \) such that \(a^{n(x)} = a^{n(x)}ca^{n(x)} \) for a \(c \in R \). Clearly, every \(\pi \)-regular ring is an exchange ring.

Corollary 6. Let \(I \) be an ideal of a \(\pi \)-regular ring \(R \). Then the following are equivalent:

1. \(I \) has stable rank one.
2. For any regular \(a \in 1 + I \), there exist an idempotent \(e \in I \) and a unit \(u \in 1 + I \) such that \(a = e + u \) and \(aR \cap eR = 0 \).

Proof. (1) \(\Rightarrow \) (2) Let \(a \in 1 + I \) be regular. By Theorem 4, there exist an idempotent \(e \in I \) and a left cancellable \(u \in 1 + I \) such that \(a = e + u \) and \(aR \cap eR = 0 \). Since \(R \) is \(\pi \)-regular ring, we have a positive integer \(n \) such that \(u^n = u^n vu^n \) for a \(v \in R \). Hence \(u^n (1 - vu^n) = 0 \). As \(u \) is left cancellable, we deduce that \(vu^n = 1 \). Clearly, \(v \in 1 + I \). From \(vu^n + 0 = 1 \), we can find a \(y \in R \) such that \(v = v + 0 \times y \in U(R) \) because \(I \) has stable rank one. This means that \(u \in U(R) \).

(2) \(\Rightarrow \) (1) is analogous to Corollary 5.

Let \(I \) be an ideal of a \(\pi \)-regular ring \(R \). Analogously, we prove that \(I \) has stable rank one if and only if for any regular \(a \in 1 + I \), there exist an idempotent \(e \in I \) and a unit \(u \in 1 + I \) such that \(a = u - e \) and \(aR \cap eR = 0 \). Let \(R = \mathbb{Z}_{(3)} \cap \mathbb{Z}_{(5)} = \{a/b \mid a, b \in \mathbb{Z}, b \neq 0 \text{ and } 3 \nmid b \text{ and } 5 \nmid b\} \). By [1, Proposition 16], each element \(a \in R \) can be written in the form \(a = u + e \) or \(a = u - e \) where \(u \in U(R) \) and \(e \in R \) is an idempotent. But \(R \) is not a clean ring. In other words, there exists an element \(a \in R \) which is not a sum of an idempotent and a unit can be written in the form \(a = u - e \) where \(u \in U(R) \) and \(e \in R \) is an idempotent.
Corollary 7. Let R be a regular ring, and let $a \in R$. If RaR has stable rank one, then there exist an idempotent $e \in R$ and a unit $u \in R$ such that $a = e + u$ and $(1 - a)R \cap (1 - e)R = 0$.

Proof. Let $I = RaR$ and $b = 1 - a$. Then I has stable rank one and $b \in 1 + I$. By Theorem 4, there exist an idempotent $f \in I$ and a left cancellable $v \in 1 + I$ such that $b = f + v$ and $bR \cap fR = 0$. As R is regular, there exists a $w \in R$ such that $v = vwv$. So we see that $v \in 1 + I$ is left invertible. On the other hand, I has stable rank one. Hence $v \in 1 + I$ is a unit. Let $e = 1 - f$. Then $e \in R$ is an idempotent. In addition, we have $a = 1 - b = e + (-u)$. Set $u = -v$. Then $v \in R$ is a unit and $a = e + u$. Furthermore, we have $(1 - a)R \cap (1 - e)R = 0$, as required. ■

Let R be a regular ring, and let $A = (a_{ij}) \in M_n(R)$. If every $Ra_{ij}R$ has stable rank one, we claim that there exist an idempotent $E \in M_n(R)$ and an invertible $U \in M_n(R)$ such that $A = E + U$ and $(I_n - A)M_n(R) \cap (I_n - E)M_n(R) = 0$. Set $I = \sum_{1 \leq i,j \leq n} Ra_{ij}R$. One easily checks that I has stable rank one. Clearly, $M_n(R)$ is regular. It follows from $M_n(R)AM_n(R) \subseteq M_n(I)$ that $M_n(R)AM_n(R)$ has stable rank one. In view of Corollary 7, we are done.

Let $LT M_n(R)(U TM_n(R))$ be the ring of all lower(upper) triangular matrices over a ring R. We note that $LT M_2(R)$ is not a regular ring even if R is regular. The reason is that $egin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ is not a regular element in $LT M_2(R)$. Now we investigate the conditions under which a triangular matrix can be written in the form above.

Theorem 8. Let R be regular, and let $A = (a_{ij}) \in LT M_n(R)$. If every $Ra_{ii}R$ has stable rank one, then there exist an idempotent $E \in LT M_n(R)$ and an invertible $U \in LT M_n(R)$ such that $A = E + U$ and $(I_n - A)LT M_n(R) \cap (I_n - E)LT M_n(R) = 0$.

Proof. If $n = 1$, then the result follows by Corollary 7. Assume that the result holds for $n = k(k \geq 1)$. Let $n = k + 1$. Given any $A = \begin{pmatrix} A_1 & 0 \\ * & a_{nn} \end{pmatrix}$ with any $Ra_{ii}R$ has stable rank one, by the hypothesis, we can find an idempotent $E_1 \in LT M_k(R)$ and an invertible $U_1 \in LT M_k(R)$ such that $A = E_1 + U_1$ and $(I_k - A_1)LT M_k(R) \cap (I_k - E_1)LT M_k(R) = 0$. Similarly, we can find an idempotent $e_2 \in R$ and an invertible $u_2 \in R$ such that $a_{nn} = e_2 + u_2$ and $(1 - a_{nn})R \cap (1 - e)R = 0$. One easily checks that $A = \text{diag}(E_1, e_2) + \begin{pmatrix} U_1 & 0 \\ * & u_2 \end{pmatrix}$. Clearly, $\text{diag}(E_1, e_2) \in M_n(R)$ is an idempotent matrix and $\begin{pmatrix} U_1 & 0 \\ * & u_2 \end{pmatrix} \in M_n(R)$ is an invertible triangular matrix. Furthermore, we verify that $(I_n - A)LT M_n(R) \cap (I_n - E)LT M_n(R) = 0$. By induction, we complete the proof. ■
Corollary 9. Let R be unit-regular, and let $A \in LTM_n(R)$. Then there exist an idempotent $E \in LTM_n(R)$ and an invertible $U \in LTM_n(R)$ such that $A = E + U$ and $(I_n - A)LTM_n(R) \cap (I_n - E)LTM_n(R) = 0$.

Proof. Since R is unit-regular, it is shown that every $Ra_{ii}R$ has stable rank one. Therefore the result follows by Theorem 8.

Let R be unit-regular, and let $A \in UTM_n(R)$. Analogously, we deduce that there exist an idempotent $E = (e_{ij}) \in UTM_n(R)$ and an invertible $U = (u_{ij}) \in UTM_n(R)$ such that $A = E + U$ and $(I_n - A)UTM_n(R) \cap (I_n - E)UTM_n(R) = 0$. Define $QM_2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \ | \ a + c = b + d, a, b, c, d \in R \right\}$.

Corollary 10. Let $A = (a_{ij})$ be a 2×2 matrix over a unit-regular ring R. If $a_{11} + a_{21} = a_{12} + a_{22}$, then there exist an idempotent $E = (e_{ij}) \in M_2(R)$ and an invertible $U = (u_{ij}) \in M_2(R)$ such that

1. $A = E + U$.
2. $e_{11} + e_{21} = e_{12} + e_{22}$.
3. $u_{11} + u_{21} = u_{12} + u_{22}$.

Proof. Construct a map $\psi : QM_2(R) \to TM_2(R)$ given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \to \begin{pmatrix} a + c & 0 \\ c & d - c \end{pmatrix}$ for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in QM_2(R)$. For any $\begin{pmatrix} x & 0 \\ z & y \end{pmatrix} \in TM_2(R)$, we have $\psi \left(\begin{pmatrix} x - z & x - y - z \\ z & y + z \end{pmatrix} \right) = \begin{pmatrix} x & 0 \\ z & y \end{pmatrix}$. Thus ψ is an epimorphism. It is easy to verify that ψ is a monomorphism; hence, it is a ring isomorphism. Therefore we complete the proof by Theorem 8.

Let $A = (a_{ij})$ be a 2×2 matrix over a unit-regular ring R. If $a_{11} + a_{12} = a_{21} + a_{22}$, analogously to the consideration above, we conclude that there exist an idempotent $E = (e_{ij}) \in M_2(R)$ and an invertible $U = (u_{ij}) \in M_2(R)$ such that

1. $A = E + U$; (2) $e_{11} + e_{12} = e_{21} + e_{22}$; (3) $u_{11} + u_{12} = u_{21} + u_{22}$.

ACKNOWLEDGEMENT

The author would like to thank the referee for his/her helpful comments and suggestions, which lead to the new version of this paper.
REFERENCES

Huanyin Chen1 and Miaosen Chen2
Department of Mathematics,
Zhejiang Normal University,
Jinhua 321004, People’s Republic of China
1E-mail: chyzxl@hunnu.edu.cn
2E-mail: miaosen@mail.jhptt.zj.cn